C

AMBRIDGE, Mass. — Where other people see bacon, biologist Luhan Yang sees lifesaving organs — hundreds and thousands of them, pig livers and pig kidneys and diabetes-curing pancreases, and possibly hearts and lungs, all growing inside droves of pampered swine.

More established scientists than Yang have dreamed of creating animal organs that are suitable for transplantation into people waiting for a human donor. But until recently, experts said it would take decades to genetically alter pig organs to make them work safely in people. Most xeno dreamers gave up.

Giving up is not in Yang’s lexicon. Urgency is. In her native China, she told STAT, 2 million people need organ transplants, “and people are dying before they get one.”

The intensely driven 31-year-old has a few things going for her that other would-be pioneers did not. As a Harvard graduate student, Yang was a lead author of a breakthrough 2013 study on the genome-editing technology CRISPR-Cas9. And in 2015, she cofounded the biotech company eGenesis with her mentor, legendary Harvard bioengineer George Church, with whom she’s also worked on trying to resurrect the Ice Age wooly mammoth through genetic legerdemain. From eGenesis’s tiny headquarters in Kendall Square, she intends to use CRISPR to accomplish what the world’s largest drug companies failed to despite investing billions of dollars: create “designer pigs” whose organs can be transplanted into people.

“Luhan is a remarkable person,” Church said, “and a force of nature.”

She better be. Daunting hurdles stand between where biology is now and where it needs to be to make transplantable pig organs. The old problems of infection and rejection of another species’ organs seem almost quaint compared to those confronting eGenesis.

There’s the challenge of CRISPR’ing an unprecedented number of genes without compromising the viability of the designer pigs and without introducing aberrant edits. And of optimizing mammalian cloning, which is how the company creates the pigs. And of persuading investors and doctors that xenotransplantation is safe, effective, ethical — and lucrative.

Yang, eGenesis’s chief scientific officer, has already made enormous strides, scientific and financial. In 2015, she and colleagues in Church’s lab used CRISPR to eliminate from pig cells 62 genes so potentially dangerous their very existence nixed previous efforts to turn pigs into organ donors. Last month, eGenesis announced that it had raised $38 million from investors. The next hurdle: get the surrogate-mother sows that are pregnant with genetically altered embryos to give birth to healthy piglets.

“Her work has the potential to change the face of transplantation and to save countless lives,” said Dr. James Markmann, chief of transplant surgery at Massachusetts General Hospital.

Yang is not only confident of success; she also sees eGenesis’s xeno work as a sort of trial run for even bolder goals. In 2016, she helped conceive Genome Project-write, whose aims include assembling a synthetic human genome from off-the-shelf parts and — because, really, as long as you’re making a human genome, why not? — doing it better than nature.

By starting from scratch, she wonders, “could we make the human genome cancer-resistant? … Or make it virus-resistant? … There is a great opportunity that xeno can tell us what would happen in humans after dramatic genome engineering.”

But if eGenesis is to succeed in making designer pigs, let alone paving the way for new and improved humans, Yang will need to fix the miscarriage problem.

Luhan Yang
A Petri dish with human embryonic kidney cells at the eGenesis lab, where scientists are taking the first steps toward creating genetically altered “designer pigs.” Kayana Szymczak for STAT

A ton of genetic handiwork

On a frigid March morning, Yang is holding her monthly meeting with Church and the company’s half-dozen employees, getting updates on the designer-pig pipeline and lighting a fire under her team. The big conference table in the windowless, unadorned basement room is strewn with 8.5-ounce cans of “Wild Jujube Drink” and snacks that Yang brought back from her Lunar New Year visit to China, where she spent five days with her parents and visited eGenesis’s pig colony.

The “highlight of the month,” biologist Marc Guell tells Yang, is that surrogate mother pigs didn’t reinfect fetuses with “PERVs.” That’s crucial, because the memorably named infectious agents, short for porcine endogenous retroviruses, could cause tumors, leukemia, and neuronal degeneration if transplanted into patients. To make xenotransplantation succeed, PERVs have to go.

PERV genes are interwoven into the genome of pig cells, so eGenesis scientists start their work with CRISPR-Cas9, which has made editing organisms’ genomes so simple high-schoolers can do it. It takes far more expertise, however, to remove dozens of PERV genes at once, as eGenesis does in pig fibroblasts, which are connective-tissue cells.

eGenesis ships batches of these cells to China, where each de-PERV’ed pig cell is fused with a pig ovum whose own DNA has been removed. The ova, which now contain only the PERV-free genome, start dividing and multiplying, beginning the journey to becoming pig fetuses. (This adult-cell-plus-ova technique was used to clone Dolly the sheep.) The embryos are implanted into surrogate mothers and, if all goes well, born 114 days later. (Yang won’t say how many sows are or have been pregnant.) Unfortunately, all has not gone well.

The anti-PERV work is only the start of the changes eGenesis is making to pig genomes. Its scientists are also slipping into the pig ova up to 12 human genes “to make the pig organs more human-like,” Yang said in an interview. One gene, she said, would shield its organs from attack by the human immune system; another would revamp its coagulation system to reduce the risk of clots.

That’s a ton of genetic handiwork for one little pig to handle, and early signs are it might be too much.

One batch of embryos all died, Yang said, possibly because their chromosomes had gotten scrambled by either the genetic changes or the lab manipulations. Another batch had “a lot of miscarriage,” she said.

There are other concerns, scientists noted at the March meeting. Sometimes PERVs are found in the embryos before they’re implanted into surrogate mothers. The problem, Yang says as she leaps to the front of the conference room, is that removing the DNA-containing nuclei from pig ova isn’t always complete; occasionally some of an ovum’s own PERV-infested genes remain behind, so the embryo created from it also has PERVs, genetic analyses showed.

Yang grills her team. How prevalent is this? May I see the genetic profile again? What can we do quickly to correct the protocol? A gene that was inserted to protect other genes “is the problem,” she says with finality. “Maybe we should pause this one and look for other solutions. It’s better to figure out where the problem comes from, then we don’t have the problem anymore.”

Luhan Yang
A research station at eGenesis, which is using CRISPR to rid pig genomes of viruses and make the animals’ organs safe for human transplant. Kayana Szymczak for STAT

‘We’re short of time’

A clue to how Yang’s mind works is that she counts. Ask her about the ethical issues around xenotransplantation and she will immediately tell you there are three, then elaborate on them. Ask her what characteristics make up the “entrepreneurial spirit” and she will say there are four, then reel them off. Colleagues say she has an uncanny knack for working backward from an ultimate goal and breaking it into a manageable sequence of steps.

She darts down corridors, speaks quickly, hates waiting, and expects others to move at her speed. Some colleagues call her impatient. Biologist Dong Niu, who worked in the Church lab and is now at eGenesis, accompanied Yang on a recent blitz of apartment hunting. Yang set such a breakneck pace, Niu said, “I couldn’t even watch.”

“Luhan is a remarkable person and a force of nature.”

George Church

When eGenesis was packing up a previous office, waiting for the movers irritated Yang so much that she plopped her computer and other belongings into a child’s Radio Flyer wagon and took off.

Even on vacation, Yang operates on fast-forward, jet skiing while visiting places like Hawaii. Closer to home, she unwinds by having friends and coworkers over for dinner and karaoke, making sure to order enough so her guests can take home leftovers.

She pushes colleagues to accomplish tasks — analyzing DNA edits, checking the viability of cells — now, if not sooner, and when she asks a coworker to explain a scientific detail, she says, “We’re short of time; just get to the point.”

Yet colleagues sing her praises, saying she motivates them and brings “extraordinary passion” and a “laser focus” to her work. “Whenever you have a question, she has an answer, almost before you get it out,” said Niu.

Coworkers also mention her kindnesses, like the sweltering summer day when the tiny Yang passed a discarded air conditioner on a Cambridge street and, on foot, hauled it to the eGenesis office 30 minutes away. She left it on the desk of a colleague whose apartment had no AC.

Yang was born and grew up in a small town in a mountainous region of southwest China. Her parents were “ordinary working class people,” she told STAT, her father a government employee and her mother an accountant.

Her hometown is named for the Chinese Buddha who represents wisdom. “Because of that we have a lot of temples in the mountain,” she said. “And because of that I was very fascinated by nature when I was young. I think that had an influence on how I decided my career path.”

In 2004, as a high school senior, she was chosen for China’s four-person team in the 15th International Biology Olympiad, held in Australia. The global competition consisted of a written test on biological theory and a practical test of lab techniques. Yang was one of 16 contestants to win a gold medal, coming in 13th.

Sign up for The Readout: A guide to what's new in biotech

Please enter a valid email address.

Because she had stuffed her head with what felt like all of biology for the Olympiad, at Peking University she majored in psychology as well as biology. “I chose psychology because I thought human thinking is very fascinating,” she explained. “Later I regretted I did not study it harder because, I found, business I can learn, immunology I can catch up on, but how to motivate people and how to manage people with different interests is the hardest part of my transition [into business].”

In 2008, Yang entered graduate school at Harvard, where she rotated through three labs before joining Church’s. It was a crash course not only in biological engineering but also in what success means. “I think my generation of Chinese, we are very aggressive and very optimistic,” Yang said. “Sometimes I think we all want to be successful and to find a shortcut to be successful, because the competition [for academic success in China] is so fierce.”

The different “worldviews and value systems” she saw at Harvard, she said, “made me open my eyes and reassess what kind of person I want to be. I want to pay back to society.”

Encouraged to think big

Yang stumbled out of the gate in Church’s lab, nearly failing her PhD qualifying exams because her English was so poor. It was her first academic setback, but in relating the story, Yang betrayed no more emotion over the experience than if it had been another gene she had to CRISPR. “George asked the committee to let me pass with the condition that he would spend more time with me for English training,” Yang said.

When Church celebrated his 60th birthday in 2014, one lab member hacked his calendar to see how much time each student had scheduled with him. “I was number one,” Yang said with some amusement. “[The hacker] was saying, you are so needy, Luhan, but it’s not like that.”

It was more that she walked point on some of the lab’s most important experiments. In 2012, she and postdoctoral fellow Prashant Mali teamed up on CRISPR-Cas9, a molecular complex that bacteria use as a primitive immune system; other scientists had recently gotten it to cut specific locations on DNA floating in test tubes. Mali and Yang got a single cluster of CRISPR molecules to edit multiple genes in human and mouse cells in one fell swoop, a breakthrough published in early 2013. Although Mali and Yang had equal billing as first authors, the paper is always referred to as “Mali et al.” Yang said that doesn’t bother her.

Soon after, physicians approached Church about using CRISPR to alter the genomes of pigs so their organs would not be rejected by the human immune system. The very question was a triumph of hope over experience. In the 1990s, a handful of drug companies, including Novartis, had collectively spent north of $2 billion to use genetic manipulation to make human-friendly pig organs.

“People thought xeno could solve the organ shortage issue,” Yang said. “But they underestimated how many [genes] have to be edited.” That and PERVs — those pig viruses — sunk those efforts; xeno was dead in the water for 15 years.

Her motivation in cofounding eGenesis is not only scientific but also cultural. China has long been shunned by the global community of transplant surgeons because it used prisoners as donors, which is regarded as unethical because prisoners can be coerced. And with China’s tradition that people must be buried or cremated intact, Yang said, “there is no organ-donation culture. Chinese surgeons feel very frustrated. Their purpose is to save patients, but [because of these reasons] they are marginalized from the transplant community.”

She said she feels “a strong sense of responsibility” to help the millions waiting for organs in her homeland: “I regard myself as a Chinese scientist. Something that can potentially solve a huge health care and social problem for China and for the world? I feel it is a privilege to work on that.”

Sign up to our Weekend Reads newsletter

Please enter a valid email address.

With hundreds of labs catching CRISPR fever since 2013, most experiments have altered one or two genes at a time, maxing out at five. Yang’s challenge was audacious: To knock out all the PERVs would require a tenfold improvement. “But if we could make it work,” she said, “the impact would be huge.”

They did, and it has been. In 2015 the Church lab announced it had CRISPR’d out 62 PERV genes in pig kidney cells growing in lab dishes. It was a record, and it still stands.

“George always encouraged me to think bigger,” Yang said.

Luhan Yang
Stacks of Petri dishes with human kidney cells. For designer pigs to become human organ donors, they will also need human-like clotting and immune systems. Kayana Szymczak for STAT

Pushing the limits of technology

Determined as she is to make xenotransplantation succeed, Yang also sees it as “opening a back door for me to push the limit of [genomic] technology.” For one thing, “xenotransplantation requires large-scale genome engineering,” she explained. Besides knocking out PERVs, which is relatively easy, making organ-donor pigs requires inserting large chunks of human DNA into the pig genome. “Our ability to knock in a large fragment of DNA is still limited,” Yang said.

Working out how to do it in the pigs would point the way toward, say, adding copies of the cancer-fighting gene p53 into a person’s genome. “That’s why I love xeno,” she said. “It’s a platform to help us assess technology.”

Yang has been tripped up before by her bold vision. In a 2015 story, Technology Review portrayed her as exploring how to use CRISPR for “engineering the perfect baby” whose bespoke DNA would be inherited by future generations. Yang and Church say she wasn’t doing that, and that her difficulty with English led to a misunderstanding. The story “was probably her first [interview],” Church said. It “painted a picture of her working on a human germline project, when she had just been learning about human oocytes” for the pig genome engineering.

Technology Review said it stands by its story: “Luhan Yang very clearly revealed to us a plan to edit cells of the human germline. No babies involved,” the magazine said in a statement.

Yang immersed herself in the ethical issues around xenotransplantation, but they haven’t slowed her pursuit of transplantable pig organs.

Some scholars argue that it is morally wrong to value human life more than animals’, but “so many people are eating pork every day,” Yang said. As for “playing God” — the argument that it is unethical to change a pig in the way that genome-editing does — she retorts that “the highest moral standard is human life. I think it’s a personal choice whether you use a pig organ or die. But you shouldn’t prevent other people from using it.”

As of early March, two of eGenesis’s cloned and CRISPR’d pig fetuses were just “a few weeks from delivery,” Yang said. “We checked the genotype and were surprised but also delighted to see that the fetuses [in one surrogate mother] are 100 percent PERV-free.”

Yang is more than ready to be a proud mother: “I feel it’s our time.”

Leave a Comment

Please enter your name.
Please enter a comment.

  • I am writing this comment because, as a critical care medicine specialist who cares for children, I believe the ethics of this research has been glossed over far too quickly. As far as I can see, the moral justification of using pigs to grow organs for human use is based on two stated arguments, each needing examination in more detail.

    1. “Some scholars argue that it is morally wrong to value human life more than animals”, but “so many people are eating pork every day.” There are at least two major problems with this statement. First, advocates of animal interests do not claim that “it is morally wrong to value human life more than animals”; rather, we claim that the interests of sentient animals in avoiding suffering ought to be given similar moral consideration to like human interests in avoiding suffering. Second, that many people eat pork is irrelevant to the question of whether using pigs as commodities, without consideration of their interests in avoiding suffering, is morally permissible. This is an ad-hominem fallacy: saying “you harm pigs too” is irrelevant to the question of whether it is morally permissible to harm pigs in those ways.

    2. “The highest moral standard is human life. I think it’s a personal choice whether you use a pig organ or die. But you shouldn’t prevent other people from using it.” There are at least two major problems with this statement as well. First, it is unclear what “the highest moral standard is human life” means. If it means that human life is the aim of all moral decisions, this is problematic. For example, are we obliged to procreate as many children as possible at all costs in order to increase the number of human lives? More importantly, when morally relevant properties like sentience [e.g., the ability to experience pain, suffering from confinement and isolation], self-awareness, and future-oriented desires are possessed by a non-human-animal [i.e., the pig] more than some humans [i.e., severely cognitively disabled humans], it is unclear why the human interests trump those of the non-human-animal. This ‘argument from species overlap’ challenges us to consider that mere species membership is not a morally relevant property. Second, morally permissible and non-permissible actions are not left to personal choice. We ordinarily do not allow other humans to choose whether they practice cruelty to other humans, or even cruelty to sentient non-human-animals. Rather, we argue for whether these actions are morally permissible, and then hold each-other to the moral standard.

    Animal research is an emotional issue. It is important to know the empirical evidence when discussing the issue. For example, the translation of animal research findings to human medicine is in the range of 0-5% depending on the research field; this means that, of very promising animal research findings that work consistently in non-human-animals, the vast majority do not work in humans. In addition, the animals used in research suffer greatly, from pain, confinement, boredom, frustration, and more; current so-called safeguards for research animals do not prevent this suffering. The moral question is complex: is the immense suffering of these non-human-animals the only way to realize even more immense benefit to humans from organ transplantation. Considerations include: the non-human-animal suffering is real and ensured whereas the benefit to humans is only possible and unlikely; and there are other ways to improve the organ transplantation problem, such as public health prevention programs [e.g., prevention of non-communicable diseases such as obesity, diabetes, coronary artery disease, substance abuse, etc., through improved diet and activity], and in-vitro research [e.g., research into growing organs from human induced stem cells]. To help consider the difficult moral question the ‘argument from species overlap’ can help: would we use humans of like-sentience to the non-human-animals in this research, and if not, why not? Surely the answer is ‘no’, and the reason is ‘they will suffer greatly, because they are capable of suffering.’ Well, this is exactly why we should not be willing to use the non-human-animals: ‘they will suffer greatly, because they are capable of suffering.’

  • Sometimes hubris and our desire to solve a difficult problem cause us to willfully ignore worst-case scenarios. PERVs are not likely to be eliminated (as is partly acknowledged here), and the danger they present to the recipient of a pig organ is considerable.

    The wonders of technology can leave us starry-eyed. Unfortunately, this continues to ensure that even a remote possibility of “miracle cures” takes precedence over the need for public health and prevention funding. And, as in this case, ethical concerns are often jettisoned along the way. The public is better served if we focus our efforts upstream, before transplants become necessary.

  • “It is easy to confuse ‘what is’ with what ought to be, especially when ‘what is’ has worked out in one’s favor” – Tyrion Lannister.

    ​Yang’s justification for creating human pig chimeras because “so many people are eating pork every day” is the moral equivalent of saying “everyone is doing it, so it must be okay.” It is a fallacious argument — the mere fact that most people do something does not make it correct, moral, justified, or reasonable.

    Compassion is key to the moral and spiritual growth of humanity; rather than creating new sentient beings to serve as slaves and mere property, humanity would better be served by focusing our resources on regenerative medicine and tissue engineering. Growing organs in the laboratory, or regenerating them directly within our bodies is more sustainable, and avoids inflicting pain and suffering on our fellow creatures.

  • To “design” and breed pigs to be killed for their organs is just one more example of the torture, suffering, and slaughter humans are willing to commit against other animals for our own benefit. What exactly, makes us think we are entitled to do exploit and destroy other creatures all to extend our own violent, greedy lives?

Recommended Stories

Sign up for our biotech newsletter, The Readout

A guide to what’s new in biotech — delivered straight to your inbox every weekday morning.