Skip to Main Content

A federal appeals court on Monday struck another blow against the University of California’s hopes of invalidating key CRISPR patents held by the Broad Institute of MIT and Harvard, ruling unanimously that a U.S. patent board correctly concluded that the Broad’s patents did not “interfere” with those that UC had applied for.

Barring an appeal to the U.S. Supreme Court, which is highly unlikely to accept the case, or a request for the full U.S. Court of Appeals for the Federal Circuit to consider the case, the long and bitter legal saga is largely over, at least in the U.S. (The fight over CRISPR patents in Europe continues.)


The Court of Appeals decision held that there was “no interference in fact” between CRISPR patents awarded to the Broad and CRISPR patents that UC had applied for. That is what three judges on the Patent Trial and Appeal Board, part of the U.S. patent office, had ruled unanimously in 2017.

Unlock this article by subscribing to STAT+ and enjoy your first 30 days free!

  • CRISPR finds certain sequences to change. However, there are only four (4) amino acids involved in DNA and that means there is a limited number of possibilities. If CRISPER is set to cleave at a certain sequence of AA’s, then it will do so every time this sequence exists and it is illogical to presume this sequence ONLY occurs at the sites you are interested in. Therefore, the use of this technique is based upon the random splicing of DNA where ever that sequence exists, meaning there is not only potential benefit but a greater probability for adverse splicing as well. Remember, there is nothing in this technology which focuses the splicing to the area of DNA interest. The adage don’t run with scissors may never be more applicable. This is money driven. Not knowledge or evolutionary driven. The evolutionary process is a process which does not violate viability. CRISPR will bypass the very safeguards that biology has placed. The problems will never be seen because you don’t know what you should be looking for when splicing is occurring at every CGA, or TAT, or whatever sequence you play with resulting in unknown DNA->ribosomal transcription and translation not to mention mitotic effects we aren’t anticipating. If humans have demonstrated anything, it’s the lust for money and power that drives too many.

    • I very much understand how CRISPER works Chava. It’s a random clipping of a sequence without the knowledge base to determine exactly where that clipping is occurring. E.g. using a simpler concept, if you tell a person to knock out every fence that follows three pink, two yellow and a green fence, then you will most assuredly know that fence down. But presuming that that sequence only exists where you want to knock fences down and no where else without ramifications is extremely naive; especially given the base pair sequences. More like a shotgun than a rifle or more of an axe than a scalpel. I hope that clarifies, and yes “Mike” there are only 4 amino acids in DNA and 4 in RNA, thymidine replaced by uracil. Certainly you’ve heard of these, eh Mike.

Comments are closed.