When Jennifer Doudna and Emmanuelle Charpentier embarked on the project that would change science and medicine in incalculable ways, their intentions were much more muted. Theirs was a basic research inquiry into bacterial immune systems, not an attempt to develop a new tool to manipulate the genetic code.

Yet their discovery of the CRISPR-Cas9 editing complex, recognized Wednesday with the Nobel Prize in chemistry, has ignited what even scientists allergic to hyperbole routinely call a revolution in how science is conducted. Researchers and companies are regularly discovering new applications in agriculture, diagnostics, and therapeutic development.

Unlock this article by subscribing to STAT Plus and enjoy your first 30 days free!

GET STARTED

What is it?

STAT Plus is STAT's premium subscription service for in-depth biotech, pharma, policy, and life science coverage and analysis. Our award-winning team covers news on Wall Street, policy developments in Washington, early science breakthroughs and clinical trial results, and health care disruption in Silicon Valley and beyond.

What's included?

  • Daily reporting and analysis
  • The most comprehensive industry coverage from a powerhouse team of reporters
  • Subscriber-only newsletters
  • Daily newsletters to brief you on the most important industry news of the day
  • STAT+ Conversations
  • Weekly opportunities to engage with our reporters and leading industry experts in live video conversations
  • Exclusive industry events
  • Premium access to subscriber-only networking events around the country
  • The best reporters in the industry
  • The most trusted and well-connected newsroom in the health care industry
  • And much more
  • Exclusive interviews with industry leaders, profiles, and premium tools, like our CRISPR Trackr.
Sign up to receive a free weekly opinions recap from our community of experts.
Privacy Policy