Skip to Main Content

For every five appointments at Boston Children’s Hospital, one patient doesn’t show up.

Missed appointments are a common problem at health systems. And they’re a particularly attractive target for machine learning researchers, who can use patient datasets to get a handle on what’s causing patients to miss out on needed care. In new research published this month, a group of researchers at Boston Children’s crunched more than 160,000 hospital appointment records from almost 20,000 patients for clues. Their model found patients who had a history of no-shows were more likely to miss future appointments, as were patients with language barriers and those scheduled to see their provider on days with bad weather.

advertisement

They’re predictions that, in theory, could help a health system target interventions to the patients at highest risk of missing their appointments and offer them whatever help they need making it in. But even though Boston Children’s leaders helped develop and test the model, the health system isn’t yet sold on taking it out of pilot mode and actually putting it into practice.

STAT+ Exclusive Story

STAT+

This article is exclusive to STAT+ subscribers

Unlock this article — and get additional analysis of the technologies disrupting health care — by subscribing to STAT+.

Already have an account? Log in

Monthly

$39

Totals $468 per year

$39/month Get Started

Totals $468 per year

Starter

$20

for 3 months, then $399/year

$20 for 3 months Get Started

Then $399/year

Annual

$399

Save 15%

$399/year Get Started

Save 15%

11+ Users

Custom

Savings start at 25%!

Request A Quote Request A Quote

Savings start at 25%!

2-10 Users

$300

Annually per user

$300/year Get Started

$300 Annually per user

View All Plans

To read the rest of this story subscribe to STAT+.

Subscribe

To submit a correction request, please visit our Contact Us page.